Collaborative Judgement
نویسندگان
چکیده
In this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. We apply CJ to the use case of scientific paper assessment and we validate it over simulated data. The results show that the rankings produced by our algorithm improve current scientific paper ranking practice based on averages of opinions weighted by their reviewers’ self-assessments.
منابع مشابه
Collaborative Rankings
In this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. Here we apply Collaborative Jud...
متن کاملCollaborative Judgement
In this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. We apply CJ to the use case of ...
متن کاملCollaborative Judgement
In this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. We apply CJ to the use case of ...
متن کاملCollaborative Judgement
In this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. We apply CJ to the use case of ...
متن کاملThe Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015